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Abstract 

Scalar-tensor theories are discussed as encompassing three classical long-range 
fields, including the electromagnetic field. In  order to shed addit ional light on 
the restrictive assumptions made by  Dieke concerning the coupling of the scalar 
field with matter ,  the ponderomotive laws of a scalar-tensor theory are con- 
structed free of approximations in the form of integral laws. The integrals are 
extended over two- and three-dimensional domains tha t  lie entirely in empty  
space but  surround the regions containing mat ter ;  as for the latter,  the vacuum 
field equations are not required to hold, but  no further assumptions are made. 
I t  turns out tha t  the gradient of the incident scalar field will contribute to the 
rate of change of the mass and linear momentum of a 'particle '  an amount  
proportional to tha t  particle 's  scalar-field source strength, which in turn is an 
arbi t rary  function of time, unless Dicke's special restriction is imposed. To this 
extent  the motion of a test particle is indeterminate,  contrary to experience. 

1. Survey of Scalar-Tensor Theories 

R e c e n t  e x p e r i m e n t a l  w o r k  b y  D i e k e  a n d  m e m b e r s  o f  his  g r o u p  
(Diekc  & G o l d e n b e r g ,  1967) has  r e k i n d l e d  i n t e r e s t  in  t h e  t y p e  o f  
t h e o r i e s  t h a t  he  cal ls  s c a l a r - t e n s o r  t h e o r i e s  a n d  w h i c h  h i s t o r i c a l l y  a r e  
b a s e d  on  t h e  f i v e - d i m e n s i o n a l  u n i t a r y  f ie ld  t h e o r i e s  b y  K a l u z a  (] 921) 
a n d  t h e i r  m o d i f i c a t i o n s  b y  E i n s t e i n  a n d  B e r g m a n n ,  J o r d a n ,  T h i r y ,  
a n d  D i c k e ' s  g r o u p . $  I n  t h e  o r ig ina l  p a p e r  b y  K a l u z a  t h e  u n i f i c a t i o n  o f  
g r a v i t a t i o n  a n d  e l e c t r o d y n a m i c s  was  a c h i e v e d  b y  t h e  p o s t u l a t i o n  o f  a 
f i v e - d i m e n s i o n a l  p s e u d o - R i e m a n n i a n  m a n i f o l d ,  r e s t r i c t e d  b y  t h e  
r e q u i r e m e n t  t h a t  t h e r e  e x i s t  a c o n g r u e n c e  o f  i s o m e t r i c  geodes ics .  
K a l u z a ' s  t h e o r y  l e a d s  to  a g e o m e t r y  w i t h  p r e c i s e l y  t h e  s a m e  deg rees  
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of freedom characterizing the conventional Einstein-Maxwell theory. 
I f  Kaluza's condition is relaxed, so that  there exists a congruence of 
isometric curves (which need not be geodesics), then there emerges a 
fifteenth field variable, which in four-dimensional terminology is a 
scalar (Bergmann, ]948). 

The task of constructing dynamical laws involving conventional 
gravitational and electromagnetic potentials, and a scalar as well, 
appears at first sight to present unlimited possibilities. Their number 
is considerably reduced if one agrees (a) that  the field equations are to 
be derivable from a least-action principle, and (b) that  they be of no 
higher than the second differential order. The search is then reduced 
to the consideration of appropriate Lagrangians. 

I f  it were not for the scalar, there would exist only three scalar 
densities of the requisite differential order, [gl 1/~ R, Igl 1/2, and Igl 1/2 M. 
The assumed existence of an additional potential, a scalar, permits the 
multiplication of the three scalar densities above by  arbitrary func- 
tions of that  scalar (which will be designated by the symbol ~ from 
now on), and the construction of one additional term in the Lagrangian, 
the square of the gradient of the scalar. The most general Lagrangian 
compatible with the requirements listed above is of the form 

L = Igll/2[f~(@R +f.~(@M §  +f~@)] (1.1) 

R is the (four-dimensional) curvature scalar, and M the Maxwell 
scalar. This Lagrangian is a scalar density with respect to four- 
dimensional curvilinear coordinate transformations, and invariant 
with respect to gauge transformations. 

The number of arbitrary functions in the expression (1.1) may be 
reduced further. Redefinition of the metric tensor field of the kind 

g,~ = a@) g,~* (1.2) 

depending on the choice of a, makes it possible to replace f l  by  a 
constant (or, if preferred, by  ?). One might think of doing the same 
with the electromagnetic potentials, but  the gauge group leads to a 
unique definition of the electric field as that  curl that  is gauge- 
invariant. One may, however, replace the scalar potential ~ by  some 
function of % b(@, so as to make fs constant. In so doing one has 
exhausted all the recalibrations of field variables available. 

The last term in the expression (1.1) leads to cosmological terms 
both in the field equations for the tensor field and in those for the 
scalar field; in a weak-field limit these field equations reduce to the 
equivalent of linear wave equations, but  with different values for 
the rest masses of 'gravitons' and of 'scalarons'. Whereas the former 
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depends algebraically on the value of f4 in the weak-field limit, the 
latter also involves the derivative off4 with respect to its argument ~0. 
In most discussions the possibility of a cosmological term has been 
disregarded, on the grounds that  there is neither a strong theoretical 
nor an observational motivation for suspecting tha t  either gravita- 
tional or scalar waves propagate with a speed different from the speed 
of electromagnetic waves. 

For a static gravitational field the existence of a cosmological term 
would lead to a Yukawa-like modification of the inverse-square law; 
planetary orbits would be the more sensitive to the existence of such 
an exponential cut-off the larger their dimensions, whereas the well- 
known relativistic effects are most pronounced for the inner planetary 
orbits. The absence of any observed deviations from Kepler's Third 
Law imposes a stringent upper bound on the magnitude of any 
cosmological term in the equations for the tensor field. There is no 
comparable accurate information available concerning the properties 
of the scalar field, if any; hence a cosmological term in the Lagrangian 
(1.1) cannot be ruled out on observational grounds. 

I f  one were to adopt a Lagrangian of the form 

L = ~ / ( - g ) [ g ~ " ( R , ,  - % , % , )  § � 8 9  + B]  (1.3) 

with both A and B as yet  undetermined functions of % the field 
equations would take the form 

1 -  - p a  _~_ 

(1.4) 

d A  d B  
2(gP'~(p,p);,~ + �89 q~ p(~ A ' + B '  = O, A ' - -d-~ ' B '  - dq9 (1.5) 

-2(AgP~p~);~ = 0 (1.6) 

I f A '  r 0, then A plays the role of a dielectric factor which, because it 
is not constant, cannot be eliminated from the theory by a change in 
the choice of electromagnetic units. As for the wave equation obeyed 
by the scalar field, (1.5), the inhomogeneous term stemming from the 
Maxwell term in the Lagrangian is of the third degree in the deriva- 
tives of the field variables; hence it will not contribute to the source 
of the scalar field in the lowest order of a weak-field approximation. 
But unless B '  = 0 for ~ = 0, the last term in (1.5) will act as a mass 
term in the 'scalaron' equation, which in the weak-field approximation 
will resemble a Klein-Gordon equation. 
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Both the electromagnetic and the scalar fields act as sources of the 
gravitational field, but  enter equation (1.3) only with terms that  are 
at least of the second degree in these field variables. 

In what follows the function B(~o) will be set zero, not because in the 
author's opinion there is any strong physical argument for omitting 
all cosmological terms, but  because in this preliminary and largely 
speculative s tudy the inclusion of too many possibilities would 
dissipate the emphasis, which is to be directed toward the degrees of 
freedom of the scalar field. 

2. Dicke's Theory 

In constructing his own field theory, Dicke (1964) has generally 
disregarded electromagnetic terms and has set the cosmological term 
zero. But  he has introduced into the Lagrangian an additional term, 
which was to incorporate, at a non-quantum level, all matter  and all 
fields other than the tensor and the scalar fields. I f  this term in the 
Lagrangian be designated by  the symbol LM, then the (variational) 
derivative of L~  with respect to the metric tensor is to represent the 
energy-stress tensor density resulting from all contributions except 
guy and ~. 

This representation of matter  is ordinarily considered a permissible 
phenomenologieal simplification, which involves no particular 
physical assumption. Dicke has, however, incorporated a non-trivial 
assumption by  specifying that  in a calibration of the metric and the 
scalar field in which the usual gravitational term in the Lagrangian is 
multiplied by  the scalar ;~ and the scalar field term by  a specified 
numerical factor and by  A -1, the matter  term is not to depend on the 
scalar at  all. His Lagrangian has the form : 

with 

L~ = ~/ ( -g)(AR - (~/A) gP~A pA,~) + LM (2.1) 

OLM 
o~ = o ( 2 . 2 )  

This requirement can, of course, be translated into the language 
employed in equations (1.3) through (1.6) (Dicke, 1962). Employing 
for Dicke's metric tensor the symbol 0 for a moment, the relationships 
are: 

g~v = ~g~v A = exp [(l//~) ~] /c = (O) ~- 3)1/2 (2.3) 
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For Dicke to require that  L M be independent of 2 is, in the terminology 
of this paper, equivalent to requiring that  L M depend only on the 
combination 

~,~ = exp [-(~/k)] g,~ (2.4) 

I f  LM depends on ~ algebraically, then equation (2.2) turns into 

~LM~ _ ~g~,p~,, p~, _ OLMag,, (2.5) 

That is ~o say, in terms of the formalism employed in this paper the 
matter  Lagrangian is to furnish a source for the scalar field, but one 
strictly tied to its gravitational source density, that  is the energy- 
stress tensor. The source density for the scalar field is to be propor- 
tional (with the numerical constant k 1) to the trace of the energy- 
stress tensor. I f  this principle be applied to the electromagnetic field, 
reference to equation (1.5) shows that  the function A(~) should have 
to be chosen a constant and, hence, equal to unity by a trivial re- 
calibration of the electromagnetic variables. 

I f  in Kaluza's time one could argue that  a field theory encompassing 
gravitation and electrodynamics might be 'complete', today's pre- 
vailing opinion is that  the strong and the weak nuclear forces, and the 
symmetries discovered in elementary particle research, require that  a 
comprehensive theory of nature allow for additional fields. True, these 
fields might not allow of a description in the classical (non-quantum) 
limit. Thus the phenomenological description of these 'miscellaneous' 
fields and particles might reveal very little about the underlying 
fundamental theory. But Dicke's assumption, (2.2) or (2.5), applies to 
the coupling of all non-gravitational fields to the hypothetical scalar 
field at the phenomenological level. 

Dicke has justified his assumption by pointing to the experimental 
verification of the principle of equivalence, which is indeed excellent, 
partly because of his own contributions. One might, however, draw 
very different conclusions from the same admitted set of facts. One 
possible conclusion is that  the validity of the principle of equivalence 
indicates that  a scalar field of the Jordan-Thiry type does in fact not 
exist in nature; if it did, the scalar force should be observed, and it 
should lead to deviations from the principle of universal free fall, just 
as electromagnetic coupling does when there are charges. 

Another possible conclusion is that  the scalar force is not observed 
ordinarily because the proper conditions have as yet not been pro- 
vided in high-accuracy experiments. The scalar field might obey a 
Klein-Gordon equation with non-vanishing rest mass (B ' r  0), and 
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hence lead to a short-range force. Alternatively, the force might be 
activated only in the case of 'strange' or otherwise exotic particles, 
whose free fall is difficult to observe. In either case, the scalar field and 
the resulting forces would probably not have the properties desired by  
Jordan and by  Dicke. 

Suppose we adopt  the hypothesis of a scalar field but  hold Dicke's 
restrictive assumption in abeyance. According to equation (].5) the 
scalar field would propagate as a wave without polarization. I ts  field 
equation permits a spherical wave, resembling a spherically symmetric 
acoustic wave propagating in a fluid. Dipole and other multipole 
waves are, of course, not excluded. Even if Dicke's assumption were 
adopted, a spherically symmetric wave can be constructed through 
the superposition of incoming and outgoing radiation. Without  this 
assumption a purely outgoing wave merely requires a suitable source 
at the center. 

That  neither the electromagnetic nor the gravitational fields 
possess monopole waves is a result of their respective gauge groups, 
which in turn are required if these fields are to be irreducible. 57o such 
symmetry or irreducibility argument applies to scalar fields. Dicke's 
assumption annihilates an otherwise unexceptionable degree of free- 
dom of the scalar field; neither of the two well-known classical 
long-range fields is restricted by  an analogous condition. 

Instead of considering spherical waves, one may also treat  slowly 
variable fields associated with sources. The superselection rules 
resulting from the respective gauge groups lead to the conservation 
of electric charge, and to the conservation of mass and linear momen- 
tum. Again, no analogous conservation law applies to the source of 
the scalar field, unless one adopts Dicke's assumption. The source 
strength of a slowly variable scalar field can be an arbitrary function 
of the time; in Section 3 it will be shown that  this source strength does 
contribute to the ponderomotive laws. Thus, a lump of matter  
possessing a variable scalar source strength ('charge') would experience 
a variable acceleration in the lowest non-trivial approximation of a 
slow-motion E I H  treatment.  

I do not consider the present information about  the scalar field 
sufficient to reach firm conclusions either about  its existence or about  
its special properties, particularly its coupling to other fields. The 
purpose of my discussion is to bring out what I consider open questions 
and, potentially, grave difficulties for a theory involving a scalar field. 
In the next section I shall proceed from the assumed field equations 
of Section ], with B = 0, B'  = 0, and construct the rigorous pondero- 
motive theory without Dicke's special assumption. The 'test particle' 
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will have a gravitational mass and an electric charge subject to the 
(unavoidable) conservation laws, and a scalar field source strength 
that  is an arbitrary function of the time. 

3. Behavior of a Singularity 

Because of the general covariance of the scalar-tensor theory, and 
because of its gauge invariance, it is possible to obtain statements 
about  the time-dependence of two-dimensional integrals defined on 
three-dimensional surfaces that  fully surround singular world curves 
(or tubes), in such a manner that  on the three-surface itself the 
vacuum field equations are satisfied. To be non-trivial, such integral 

Singular region 

e 

Figure 1.--Shape of integral surface. 

relations must be more than identities : Their validity must depend on 
the field equations being indeed obeyed. 

The point of departure for the derivation of such integral relations 
is the construction of the generators (in the sense of Hamiltonian 
theory) of infinitesimal coordinate and gauge transformations. These 
generators satisfy the relationship (Bergmann & Schiller, 1953; 
Goldberg, 1962): 

(3.1) 3ya - CP, p 

The expressions (3L/~y ~) represent the variational derivatives of the 
Lagrangian with respect to all the field variables, which in the 
present case are the components of the metric tensor, the electro- 
magnetic potentials, and the scalar potential. The symbols 8' y~ stand 
for the infinitesimal transformation laws of the respective field 
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variables under any of the transformations belonging to the invariance 
group of the theory;  they are the appropriate Lie derivatives. The 
four expressions CP on the right are the components of the generating 
density. Any integral of the form S CPd ~p  taken over a space-like 
three-dimensional hypersurface is, with respect to that  surface as an 
initial hypersurfaee, the (canonical) generator of the infinitesimal 
transformation of field variables under the invariance transformation 
tha t  is being considered. I f  the invariance transformations of the 
theory involve arbitrary functions of time, as ours do, then the require- 
ment  tha t  the divergence of CP vanish if the field equations 

SL 
8y ~ = 0 (3.2) 

are satisfied implies that  the coefficients of these arbitrary functions 
in CP can be reduced to zero, though strictly speaking they need only 
equal the curl of a (four-dimensional) curl. There is no implication 
that  the CP are the components of a vector density, or even that  they 
form a geometric object. 

With the Lagrangian (1.4) and the field equations (2.1) through 
(2.3) the left-hand side of equation (3.1) takes this form: 

~L ~, 

= [2~f~ ~" + (~:5 _ ~ ,  ~:,)jp],p + (opt ~ ~:t~ _ ~:o) jp;p (3.3) 

+ (f0p, JP - 2~CfP~;p - Cb!p,~ ) ~ 

From this expression, Mong with the identity (3.1), one can im- 
mediately read off the differential identities obeyed by the field 
equations. In  view of the fact that  the right-hand side of (3.3) is, 
identically, a divergence and that,  accordingly, a four-dimensional 
volume integral, by Gauss's theorem, depends on the (completely 
arbitrary) values of~P, ~5 on the boundary of the domain of integration 
only, the coefficients of the undifferentiated ~, that  is to say the 
expressions in the last terms, must  vanish identically: 

2Lf~;p § ~0,~ ~b § T,pJP - 0, JP;p =- JP.p -- 0 (3.4) 

The first set of identities are the analog of the contracted Bianchi 
identities in the conventional pure gravitational theory, and, of 
course, they  can be verified by direct substitution from equations 
(2.1) through (2.3). The last identity represents the conservation of 
electric charge; it forms the basis for a physically reasonable definition 
of charge-current density, and hence of electric charge, Q, in terms of 
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an integral over a space-like three-dimensional domain or an integral 
over the closed two-dimensional boundary:  

f Igll/2A   d (3.5) 
As for the remainder, the generating density of an infinitesimal 

invariance transformation turns out to be : 

Cp - 2 ~  ~f,P + (~5 _ ~ ~ ) j p ,  CP.p = o, CP = 0 (3.6) 

These expressions contain derivatives of the field variables up 
through the second order, which may be eliminated when it is realized 
that  generating densities are defined by the relationship (3.1) only up 
to the addition of a curl. By making the substitution (Bergmann, 
1958 ; Goldberg, 1958) 

21ell12GP. - ~ -  u%,o (3.7) 
where d ~  are Einstein's canonical expressions for the energy-stress 
complex, and UP"~ are Freud's expressions (yon Freud, 1939), which 
are free of second derivatives, and linear in the first derivatives of the 
metric tensor, one can obtain the following equation of continuity, 
instead of the second equation (3.6) : 

- 2 [ g l l l 2 A v p i o " $ P , o ,  (3.8) 

C~.~ = 0 

The C~ are entirely free of second-order derivatives. They do not 
vanish, but  their divergence does if or where the field equations are 
satisfied. 

The C~ may be cast into the form of a four-dimensional curl, 

C" = [~P(U~p - 21g [ 1/2~0pA~,~)] (3.9) 

Now Stokes's theorem becomes applicable. Given a three-dimensional 
'sleeve' surrounding a singular world tube, as sketched in Fig. 1, we 
have 

I f  the 'sleeve' is permitted to contract lengthwise into an infinitesimal 
band whose (coordinate) width equals dt ,  then equation (3.10) turns 
into the condition of time dependence: 

d 
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Equations (3.10), (3.11) are associated with the coordinate in- 

variance of the action principle. As for the gauge invariance, the 
expressions are very simple. The generating density that  is free of 
second-order derivatives is: 

CP - 2[g]~/2A~5~.~P "~ = 2(Ig[1/2A~op'~5),, (3.12) 

I t  follows that  

f CpdSF, o=~ [gll/2A~P~d2Ep, (3.13) 

and 

[gll/~A~5,zq0kzd2Sk = d  ~ It] 1121~5~k0c~2Sk (3.14) 

This relationship expresses the law of conservation of electric charge 
in integral form. As the function ~5, which appears both on the left 
and on the right, is arbitrary, a relationship such as (3.14) may be 
decomposed into an infinite but  discrete set of relationships, each of 
which represents a particular choice for that  function. For instance, 
one might restrict one's choice to such functions whose time derivative 
vanishes, so that  the left-hand side involves only magnetic but  not 
electric components of the field, but  choose as regards space- 
dependence spherical harmonics, performing the integrals on the unit 
sphere. One will then find that  the time derivatives of all the surface 
integrals over the electric displacement, weighted with the various 
spherical harmonics, are given by surface integrals involving the cross 
product of the magnetic induction by  the gradient of the same 
spherical harmonic. Choosing for ~5 a constant one obtains on the 
right the time derivative of the charge, and on the left zero. 

Similarly, the relationship (3.11) may be decomposed into an 
infinity of separate integral conditions, depending on the choices of 
the arbitrary functions ~P. Again, the time dependence yields only 
identical terms on the left and on the right, and one exhausts the 
variety of non-trivial relations by  restricting oneself to functions that  
are constant in time. I f  in a weak-field approximation the weighting 
functions are set constant, one obtains on the right expressions that  
might be interpreted as energy and linear momentum, corrected for 
the interaction of the electric charge-current with the external 
potential. The time derivatives of these integrals are given by  the 
integral over Poynting's vector and by  the force, respectively, the 
latter also represented as a surface integral. 

I t  is significant that  the scalar field enters on the left of (3.11 ) in the 
form of terms that  are quadratic in its gradient, but  that  it enters on 
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the right only algebraically, by way of the function A, which repre- 
sents the (variable) dielectric 'constant' of the vacuum. Otherwise the 
(canonical) mass, and the (canonical) linear momentum, of a piece of 
matter, those quantities that  are subject to dynamic laws, depend 
primarily on metric and electromagnetic variables. They do not in- 
volve the gradient of the scalar field. That this gradient field appears 
on the left proves that  it does contribute to the force, and to Poynting's 
vector, quadratically. 

In the weak-field case, in order to determine the motion of a test 
particle in an external field, one calculates the mass and the linear 
momentum in linear approximation, obtaining the mass, for instance, 
as the integral over the gradient of the Newtonian potential. In this 
approximation the 'mass' depends entire]y on metric components, 
and not at all on either electromagnetic or scalar-field contributions. 
As the leading terms on the left are quadratic in the various field 
strengths, the important terms to be taken into consideration in the 
lowest-order approximation are bilinear in contributions by the self- 
field of the particle and by the external field. Thus one obtains, in a 
very intuitive fashion, such products as mass times gravitational field 
strength, electric charge times electric field strength, and finally 
scalar source strength times scalar field strength. 

As mentioned earlier, the scalar source strength differs from mass 
and electric charge in that  the latter two properties of a test particle 
are in lowest order constants of the motion, whereas the scalar source 
strength is an arbitrary function of time. Hence, even if the external 
field is given by the distribution of the large astronomical objects, the 
force acting on a test particle contains one term which even in the 
lowest-order approximation involves an arbitrary function of time. 
Hence the motion of a test particle in an external field is undetermined 
in the scalar-tensor theory, in gross contradiction to experimental 
evidence. 

4. Concluding Remarks 

The principal point of this paper is a discussion of Dicke's assump- 
tion, which restricts the role of non-gravitational fields as sources of 
the scalar field. Whereas in other respects the scalar field enters his 
theory as one of the three classical long-range fields, he subjects its 
lowest-order spherical normal mode to conditions that  have no 
analogs in contemporary theory. 

Without wishing to imply that  this facet of his theory should be 
discarded out of hand, I have constructed the rigorous ponderomotive 



36 P E T E R  G. B E R G M A N N  

laws of  a scalar - tensor  t heo ry  in which ' m a t t e r '  is represen ted  b y  
separable  regions in space in which the  v a c u u m  field equat ions  do no t  
hold,  w i thou t  a n y  fu r the r  condit ions.  The  integral  laws (3.11) and  
(3.14) hold  i r respect ive  of  a n y  weak-field or s low-mot ion  approxi -  
mat ions .  The i r  explici t  fo rms  show t h a t  the  mass  and  the  l inear  
m o m e n t u m  a t t r i b u t a b l e  to  a separable  l ump  of  m a t t e r  are defined 
w i thou t  reference to  the  scalar-field gradient ,  and  t h a t  the  ra tes  of  
change of  these  quant i t ies  depend,  inter alia, on t h a t  gradient .  Hence  
a n y  t ime  dependence  of  the  scalar-field source s t r eng th  associa ted  
wi th  a l u m p  of  m a t t e r  will affect  i ts  ponde ro mot ive  behavior .  
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